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Abstract-Local and average convective diffusive mass transfer rates are analyzed numerically for high 
Peclet number acoustic streaming flow between two concentric cylinders. The streaming flows analyzed are 
for low to moderate streaming Reynolds numbers, where counter-rotating inner and outer recirculating 
flow cells exist. Thin concentration boundary layers form at the inner cylinder surface, across the streamline 
that divides the inner and outer flow cells, and at the outer cylinder surface. The core of each recirculating 
flow cell contains a well-mixed region of nearly uniform composition. The numerical results are used to 
develop Sherwood number correlations that relate convective mass transfer rates to dimensionless forms 
of the oscillation amplitude, oscillation frequency, and physical properties of the system. Numerical results 

are shown to agree with published experimental results. IQ 1997 Elsevier Science Ltd. 

INTRODUCTION 

Acoustic streaming, a long-studied and well-char- 
acterized flow, is the steady recirculating flow that 
develops around an object placed in a sound field [l- 
51. Acoustic streaming arises from the mean Reynolds 
stresses that develop as a result of the inertial rec- 
tification of harmonic motions of a fluid. Two distinct 
flow regimes are observed for acoustic streaming flows 
in the vicinity of cylindrical obstructions. Low inten- 
sity acoustic waves (small amplitudes and low fre- 
quencies) produc8: two steady counter-recirculating 
flow cells in each ‘quadrant surrounding the cylinder ; 
the inner cell circulates in the vicinity of the cylinder 
and the outer cell ‘circulates throughout the remaining 
volume of fluid [:I-51. High intensity acoustic waves 
(large amplitudes and/or high frequencies) produce a 
pair of fluid jets that flow away from the cylinder 
along the direction of the impinging sound wave [b 
81. The work presented here is concerned exclusively 
with the use of low intensity sound waves. 

When a sound wave impinges upon a solid object 
viscous forces become important near the obstruction, 
and an oscillating boundary layer of thickness 
6,c = (v/o)“~ fonms, where aAC is called the Stokes 
or AC boundary layer thickness, v is the kinematic 
viscosity of the fluid and w is the angular frequency 
of the acoustic w,lve [4]. The thickness of the steady 
streaming inner flow cell, the DC boundary layer &c, 
scales in proportj.on with the Stokes layer thickness 
[4], and the strength of flow in the inner cell depends 
quadratically on -ihe amplitude, s, of the sound wave 

t Author to whorn correspondence should be addressed. 

[3]. For acoustic streaming in an unbounded fluid, 
the only geometric parameter of importance is the 
cylinder radius, a. When one considers acoustic 
streaming between concentric cylinders where one cyl- 
inder oscillates and the other is fixed, then the radius 
of the outer cylinder, A, must also be considered 
[3, 5, 91. 

The characteristic length scales described above 
appear as ratios in the nondimensional par- 
ameterization of the acoustic streaming flow problem. 
Specifically, the thickness of the steady and unsteady 
boundary layers are known to scale with the par- 
ameter M = a/hAc [4, 5, 91. In a fluid bounded by a 
concentric outer cylinder, the dimensionless par- 
ameter A/a determines the influence of the far-field on 
the flow near the inner cylinder ; the limit of A/a + co 
is the case for an unbounded fluid, though the exact 
dimensions of the outer container are of minor 
importance when A/a > I [5, 91. In bounded flows, 
the classic double cellular flow only exists for w >> 1. 
The strength of the steady secondary flow scales as Ed, 
where E = s/a. The basic hydrodynamic characteristics 
of the acoustic streaming flow are dictated by the 
streaming Reynolds number Re, = .s2@. Low stream- 
ing Reynolds number flows are generated by low 
intensity acoustic excitations, and high streaming 
Reynolds number flows are generated by high inten- 
sity acoustic excitations. Numerous experimental 
studies have verified the general traits of acoustic 
streaming flows described above [3-5, 91. 

Despite the thorough characterization of fluid 
motion in low streaming Reynolds number acoustic 
flows, much less work has been reported for con- 
vective mass (or heat) transfer in this system. For mass 
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NOMENCLATURE 

: 
inner cylinder radius [cm] 
outer cylinder radius [cm] 

C concentration 
CO,O> C? > G > co,2 concentration functions 

defined by equation (11) 
C, concentration at the outer boundary 

[Ml 
D mass diffusivity in the fluid [cm’ SK’] 
i; ,fi , fo,* functions defined by equation (8) 

heat transfer coefficient [W cm-* ‘C-‘1 
k, mass transfer coefficient [cm SK’] 
M ratio of the inner cylinder radius to the 

Stokes layer 
thickness ; = a(w/v)“*, = a/6,, 

m,, m,, ljk AD1 parameters defined in 
equation (14) 

NU Nusselt number ; = ha/~ 

Pe, streaming Peclet number ; = Re,Sc 
Pr Prandtl number ; = v/a 
r, 0 radial and azimuthal cylindrical polar 

coordinates (0 in rad) 
R2 multiple linear regression correlation 

coefficient 
Re conventional Reynolds 

number; = wsa/v, = &A& 
Re, streaming Reynolds 

number; = ws2/v, = c2kP 
s amplitude of oscillation [cm] 

SC Schmidt number; = v/D 
Sh Sherwood number ; = k,alD 
I time [s] 
V(t) oscillating velocity of outer cylinder 

along 8 = 0 [cm s-‘1 ; = lJ,cos(wt) 
Ul amplitude of oscillating velocity 

[cm ss’] ; = ws 

V velocity vector 
% 00 radial and azimuthal components of 

the velocity vector. 

Greek svmbols 
thermal diffusivity [cm” s-l] 
Stokes layer (unsteady hydrodynamic 
boundary layer) 
thickness ; = (v/w)“’ 
steady inner hydrodynamic boundary 
layer thickness 
ratio of oscillation amplitude to inner 
cylinder radius ; = s/a 
thermal conductivity [w cm-’ Y-‘1 
kinematic viscosity of the fluid 
[cm’s_‘] 
nondimensionalized time ; = wt 
stream function defined by equation 
(2) 
angular frequency of oscillating 
velocity [SK’]. 

transport, the Schmidt number (SC = v/D) appears as 
a new parameter of the system. The analogy between 
heat and mass transfer holds here, so the Schmidt 
number may be interchanged freely with the Prandtl 
number (Pr = v/cz). Analytical solutions for heat 
transfer in acoustic streaming flows have been 
explored for a number of limiting cases [ 10-121. In 
particular, heat transfer in low to moderate Re, two- 
cell acoustic streaming flows may be reduced to three 
limiting cases : (i) conduction is dominant on both the 
inner and outer cells (Re,Pr << 1 and e2Pr << 1) ; (ii) 
conduction is dominant within the inner cell, but con- 
vection dominates the outer cell (Re,Pr >> 1 and 
e2Pr c 1) ; and (iii) convection is the dominant mode 
of transport in both cells (Re,Pr >> 1 and e*Pr >> 1). 
The streaming Peclet number, Pe, = Re,Pr (or Re,Sc), 
characterizes the relative importance of convection to 
diffusion in the outer flow cell, and the inner cell Peclet 
number, e2Pr (or s*Sc), characterizes the relative 
importance of convection to diffusion in the inner flow 
cell [12]. Detailed theoretical studies have explored 
heat transfer for cases (i) and (ii) [ 11, 121, however, 
neither heat nor mass transfer have been thoroughly 
analyzed for the case where .?Pr >> 1 (or s2Sc >> 1). 
Prior analytical solutions for this case have accounted 

for heat transfer from the inner cylinder wall to the 
core of the inner flow cell, but not for the recirculating 
nature of the flow [l 1,121. Moreover, transport across 
the streamline that divides the inner and outer flow 
cells has not been analyzed for case (iii). Past attempts 
to numerically compute heat transfer rates for inter- 
mediate values of the parameters Re, N O(1) and 
e*Pr - O(1) failed to converge [12]. Experimental 
methods have been used more extensively to explore 
a broad range of operating parameters. High Schmidt 
number mass transfer studies have been performed 
using either the dissolution of vibrating benzoic acid 
cylinders in water [IO, 131 or electrochemical limiting 
current methods [14]. As we show later, the analysis 
of these experiments requires a subtle understanding 
of the flow field present in a bounded container. 

Our primary interest in characterizing high Peclet 
number mass transport in acoustic streaming flows is 
for studying the kinetics of electrochemical reactions 
that involve homogenous reactions coupled to het- 
erogeneous charge transfer. In our case, the cylindrical 
obstruction is a wire electrode, and the recirculating 
inner flow serves to capture reaction intermediates 
generated by passing current. This flow is ideal for 
coupling with our custom-built imaging Raman spec- 
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troelectrochemistry instrumentation to identify and 
quantify reaction products trapped in the inner cell 
[15]. In common electrochemical systems (e.g. aque- 
ous salt solutions) kinematic viscosities of 0.01 cm’ 
s-1, and ion dil%sivities of 4x 10m6 cm2 SK’ give 
SC G 2500. These physical properties, combined with 
a 1 mm diameter wire electrode and acoustic fre- 
quencies between 50 and 200 Hz, match the conditions 
we analyze here, namely, low to moderate streaming 
Reynolds numbers flows with high Peclet number 
mass transport. For the case of interest, the use of low 
reactant concentrations and excess supporting elec- 
trolyte diminishes density gradients, rendering buoy- 
ancy effects negligible. 

MATHEiMATlCAL FORMULATION 

Steady acoustic streaming of a constant property, 
Newtonian fluid in the annular region between two 
concentric cylinders is driven by imposing a harmonic 
oscillation to the outer cylinder. Here we give a brief 
development of the governing equations and bound- 
ary conditions for this bounded flow and then for mass 
transfer in this flow. A more detailed development of 
the equations for the flow may be found elsewhere [3- 
5,9]. We show the two cylinder model and cylindrical 
polar coordinate system employed in this study in 
Fig. 1. The outer cylinder of radius A, oscillates as 
U(t) = OSCOS(OI’) along 0 = 0 (and rr) relative to the 
inner cylinder of radius a. 

To study the flow we employ a nondimensional 
stream function formulation, 

direction of oscillation 
Fig. 1. Two-cylinder model and cylindrical polar coordinate 
system. The inner cylinder radius is a and the outer cylinder 

radius is A. 

V”$ = M2 
( 
-$r2JlfVV3$ (1) 

where the radial and azimuthal velocity components 
are related to the stream function by 

1 w 
&= -;ae 

and v =2. a & (2) 

The nondimensional quantities are formed from their 
dimensioned counterparts (denoted with primes) 
using the inner cylinder radius and angular frequency 
of the impinging acoustic wave so that 

I 
V=%, T=wt and M’=$. (3) 

No slip of fluid at the stationary inner cylinder and 
oscillating outer cylinder provides the boundary con- 
ditions, 

1 a* a* 
--- I I r ae ,=, =dr,=, = 

o 

and 

$($,@,r) = -U,($sin(Qcos(r). (4) 

The stream function is split into steady and unsteady 
components, 

ICl(r, 8, r) = GSteady(r, 0) + tiunsteady(rr 0, r) (5) 

which are further decomposed according to their mag- 
nitudes. For small E, the steady component is 
expanded in a perturbation series : 

tisteadr, Q> = +o,o(r, 0) +E2$o,2(r, Q-t W) (6) 

where the base flow is quiescent (@,,O = 0) and the 
secondary acoustic streaming flow’s magnitude is 
O(E’). The unsteady component, 

9 unstea&~J) = eti: (r, @) cos(r) 

+e$S (r, 0) sin(T) + Ok (7) 

is comprised of in-phase and out-of-phase oscillations 
(cosine and sine functions, respectively). Low inten- 
sity streaming flows around cylinders have a high 
degree of azimuthal symmetry [3-5, 93, allowing the 
steam function to be rewritten as 

t&r, 0,~) = .efi (r) cos(z) +f; (r) sin(r] sin(e) 

+c2fo.2(r) sin(2fJ)+O(F3). (8) 

Combining equations (l)-(8) produces a set of ordi- 
nary differential equations (ODES) and boundary 
conditions for the functions fi , f s, fo,2 that are solved 
numerically. 

To study mass transfer of a dilute species in acoustic 
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streaming around a cylinder we employ the non- 
dimensional convective diffusion equation, 

$v.VC = 
1 

-v=c 
M’Sc 

where 

I 

C=$ and SC=;. 
m 

The boundary and symmetry conditions, 

C(l,B) =o,c $9 = 1 
( ) 

and 

ac ac -I I ae B=. = S @_.I = 
0 (10) 

are used to complete the set of equations to be ana- 
lyzed. As in the case of the stream function, the con- 
vective diffusion equation is split into steady and 
unsteady components and expanded as 

C(r, 8, z) = c,,, (r,@ +e 
[ 
cq (Y, e> cos(z> 

+ CS, (r, 0) sin(r) 1 + E= Co,= (Y, 0) + O(E~). (11) 

For high Schmidt number systems with flow oscil- 
lations of the frequencies studied here, unsteady con- 
tributions to the concentration field are attenuated, 
because the relaxation time for the concentration field 
is slow compared to that for the flow field [lo, 161. 
Therefore, all but the steady terms in equation (11) 
may be neglected. Equations (9)-(11) are then com- 
bined to give 

and 

where Pe, = c’@Sc. The streaming velocity com- 
ponents of v,,= are found by differentiating the $,,= 
solution according to equation (2). Equation (12) 
appears to match an O(1) term, the left hand side, to 
an 0(e2) term, the right hand side, however, these two 
terms are of comparable magnitude provided 
tiSc 3 O(E-*). This is precisely the high streaming 
Peclet number case of interest here. We solve equa- 
tions (12) and (13) numerically for large streaming 
Peclet numbers, Pe, >> 1, to model the mass transport 
in acoustic streaming flow around a cylinder. 

NUMERICAL SOLUTION 

All numerical solutions reported here were 
developed using FORTRAN77 code written and com- 
piled with Language Systems FORTRAN running on 
a Macintosh 7200/90 PowerPC. The range of dimen- 
sionless parameters explored in these studies is 
0.05 < E < 0.20, 100 < M= < 500, 500 < SC < 5000, 
and A/a = 10. The range of these parameters was 
chosen to match conditions for planned experimental 
studies. As detailed below, finite difference methods 
were used to provide stable and convergent solutions 
that conserved mass and displayed good agreement 
with well-established results. 

Since the azimuthal dependence of the stream func- 
tion is accounted for analytically in equation (S), a 
simple one-dimensional finite difference technique is 
used to solve the ODE’s for the stream function’s 
radial dependence. Centered differences around 
10000 evenly spaced radial nodes produce a sparse 
matrix that is solved with a diagonal matrix solver. 
The qualitative and quantitative results for this stream 
function solution agree with well-established ana- 
lytical and experimental results reported in the litera- 
ture [3-5, 91. 

The numerical formulation for the high Peclet num- 
ber concentration field is complicated by the for- 
mation of thin concentration boundary layers in the 
system. Finite differences with nonuniform grid nodes 
are employed to solve the convective diffusion equa- 
tion (12) with its boundary conditions (13). Figure 2 

Fig. 2. Finite difference grid used in the finite difference 
solution. The 50 x 2%point grid (TX 0) shown is rep- 
resentative of the 500 x250-point grid used in the compu- 
tations. The high-density inner region is needed to resolve 
the steep concentration boundary layers at the inner cylinder 
and the dividing streamline. The low-density middle region 
improves computation speed, and the mediumdensity outer 
region is needed to resolve the concentration boundary layer 

at the outer cylinder. 
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is a representation of the nonuniform finite difference 
grid. The high node density near the inner cylinder 
is needed to accurately determine the concentration 
profile through the thin concentration boundary lay- 
ers at the inner cylinder and the dividing streamline. 
A low density grid in the middle region where the 
concentration gradients are small lessens computation 
time, and the medium density grid near the outer 
cylinder improves accuracy of concentration profile 
where the concentration gradients steepen. The result- 
ing matrix is solved by the alternating direction 
implicit (ADI) method [17]. The AD1 method 
employs a pseudo time step to solve an elliptic partial 
differential equation as a parabolic partial differential 
equation that is integrated to steady-state. The pseudo 
time step may be: viewed as a relaxation parameter, 
p cc l/At, that is cycled through the geometric series, 

k-l 

wherek=1,2 ,..., c (14) 

until an acceptable iterate tolerance is reached [17]. 
The parameters m, and m2, the maximum and mini- 
mum relaxation Iparameters, and c, the cycle length, 
are chosen to achieve stability and minimize com- 
putation time. Tlhis system is very sensitive to these 
parameters, though once determined, the system con- 
verges and is stable. The number of iterations required 
is a function of the streaming Peclet number, grid size, 
and iterate error tolerance (see Table 1). Higher Pe, 
results in stiffer equations and more iterations ; as few 
as 6000 iterations are required for Pe, = 1000 and 
nearly one million iterations for Pe, = 100,000. Each 
iteration on a 500 x 250 (r x 0) node grid requires solv- 
ing 750 tridiagonal matrix systems for 125,000 
unknowns each, allowing the solution to proceed at 
roughly 400 iterations per hour on the Macintosh 
Power PC. Thus, several days of computation time 
are often necessary for the solutions to the convective 
diffusion equation to converge to the specified toler- 
ance. 

We checked mass conservation of the solution by 
calculating and comparing mass flows at the inner 
cylinder surface, the dividing streamline, and outer 
cylinder surface using 

Mass flow = 4 
~12 ac 

- 
s I 0 ar. 

rd0. (15) 

A mass conservation ‘error’ is calculated between each 
pair of radial locations by taking the absolute value 
of their difference and dividing by their average. As 
Table 1 shows, mass conservation improves with 
decreasing iterate error tolerance and increasing grid 
node density at the expense of significantly increased 
computation time. For the solutions in this work, a 
grid of 500 x 250 and an iterate error tolerance of 10m8 
are sufficient for most of the solutions to conserve 
mass within 1%. In some cases it is necessary to 
increase the number of grid nodes to account for stee- 
per concentration gradients and/or decrease the iter- 
ate error tolerance to reach solutions that conserve 
mass within 1%. 

Since the solution is iterative, we calculated 
residuals as another method of verifying the solutions. 
Residuals are found by taking numerical derivatives 
of the solution, substituting them into equation (12), 
and computing a fractional difference between the 
left- and right-hand sides of the equation. The point 
residuals for these solutions are 0(10w6) or smaller 
throughout the entire field, indicating the solutions 
satisfy the governing equations. 

RESULTS 

General features of acoustic streaming flow and 
resulting high streaming Peclet number mass transfer 
around a cylinder are shown in Fig. 3. The flow field 
possesses inner and outer cells that circulate in 
opposite directions in each quadrant, as described in 
the introduction. These recirculating flows are sep- 
arated by a dividing streamline located at r = 6,,+ 1 

Table 1. Effect of grid node density and iterate error tolerance on mass conservation and 
number iterations 

A42 E2SC 
Grid size 

(r x 0) 
Iterate error 

tolerance 

Mass 
conservation 

error (%) Iterations 

100 25 500 x 250 1o-6 4.83 9000 
100 25 500 x 250 lo-* 0.91 22,000 
100 25 500 x 250 0.89 34,000 
100 25 500 x 250 ;;::: 0.88 46,000 
200 12.5 500 x 250 low 0.67 22,OOot 
200 12.5 500 x 500 lo-* 0.65 20002 
200 12.5 1000x250 1o-8 0.43 SOOOj 
200 12.5 1000x500 low 0.21 60001 

t Run with initial guesses of C = 1. 
$ Used results from ‘t’ as initial guesses. 
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r r 

Fig. 3. Contour plots of the flow and concentration fields. 
The flow contour plot shows streamlines of the counter- 
rotating inner and outer flow cells and the dividing stream- 
line, which mass traverses only by diffusion. The con- 
centration contour plot shows three distinct concentration 
boundary layers, one at the inner cylinder, one at the dividing 
streamline, and one at the outer cylinder. The streamlines 
are spaced at A$ = 0.0002 and the concentration contours 
at AC = 0.05 ; concentration ranges from C = 0 at the inner 
cylinder surface to C = 1 at the outer cylinder surface. Con- 

ditions are E = 0.10, M* = 100, SC = 1250. 

along which the radial velocity is zero. The con- 
centration contours in Fig. 3 and the series of radial 
concentration profiles in Fig. 4 show that two ‘pools’ 
of nearly uniform concentration form in the core of 
each circulating flow. Very steep concentration gradi- 
ents, hence thin concentration boundary layers, exist 
near the inner cylinder (r = 1) and dividing streamline 
(Y = &+ l), and a moderately steep concentration 
gradient exists near the outer cylinder (r = 10). Each 
region where substantial concentration gradients exist 
may also be considered regions of significant mass 
transfer resistance. Figure 4 clearly illustrates the 

7 

c 

0.8 

0.6 

dividing streamline 

0.0 
0 2 4 6 81 

r 
0 

Fig. 4. Radial slices of the concentration field showing the 
location of the dividing streamline, three distinct con- 
centration boundary layers and two ‘pools’ of nearly uniform 
concentration. The O-curves from 0 to z/2 are evenly spaced. 

Conditions are E = 0.10, M* = 100 and SC = 1250. 

steepness of the radial concentration gradients and 
shows that the concentration is constant along the 
dividing streamline. In Fig. 5, symmetry is evident at 
the boundaries 0 = 0 and n/2 where the azimuthal 
concentration gradients tend toward zero. Further- 
more, the flux at the inner cylinder decreases with 
increasing azimuthal angle as material is convected 
clockwise along the surface and is consumed. The flux 
along the dividing streamline increases with increasing 
azimuthal angle as material diffuses inward. Since the 
inner and outer flows circulate in opposite directions, 
mass transport along the dividing streamline is much 

0’ 

outer cylinder 

I I I 
0 7~18 xl4 3~18 ICI2 

Fig. 5. Local flux as a function of the azimuthal angle at the 
inner cylinder surface, the dividing streamline and the outer 
cylinder surface. Conditions are E = 0.10, M* = 100, 

SC = 1250. 
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r 

Fig. 6. Contour plcmts showing the amplitude dependence. 
Higher amplitude c.auses stronger flow and thinner con- 
centration boundary layers. Streamlines are shown in plots 
(a) and (d) and concentration contours in (b) and (c). The 
streamlines and concentration contours are spaced the same 
as in Fig. 3. Conditions are M2 = 100, SC = 1250: (a) and 

(b) E =: 0.10 ; (c) and (d) E = 0.2. 

like that of heat transport in a cocurrent heat 
exchanger; the dividing streamline is essentially an 
internal surface alcross which mass is transported by 
diffusion alone. The flux at the outer cylinder 
decreases slightly with increasing azimuthal angle as 
material is produced and convected counterclockwise 
along this surface. The small change in flux at the 
outer cylinder is because of the much larger area and 
weaker outer flow. 

The strength of the flow and thicknesses of the DC 
and concentration boundary layers are related to the 
nondimensional quantities, E, M and SC, as shown in 
Figs 68. Figure 6 shows that the strengths of both 
the inner and outer flows increase dramatically with 
increasing E. In fact, they increase with E* as one may 
predict from equation (8). Both the DC and con- 
centration boundary layer thicknesses decrease with 
increasing M as shown in Fig. 7. The DC boundary 
layer thickness depends only on M as demonstrated 
in Fig. &8. It increases rapidly for M < 5 [3, 4, 91, 
and for flows bounded by an outer cylinder, the inner 
cell essentially displaces the outer cell, resulting in a 
flow comprised of a single main cell. Figure 8 shows 
that for higher values of the Schmidt number, thinner 
concentration boundary layers form. 

DISCUSSION 

The standard practice for analyzing high Peclet 
number mass tra:nsport in acoustic streaming flow is 
to correlate the ljherwood number, Sh, to the non- 
dimensional quantities a, M and SC [l&12, 181. The 
Sherwood number 

Fig. 7. Contour plots showing the dependence on M = 0/6,c. 
Higher M causes a thinner DC boundary layer and pro- 
portionately thinner concentration boundary layers. Stream- 
lines are shown in (a) and (d) and corresponding con- 
centration contours in (b) and (c). The streamlines and 
concentration contours are spaced the same as in Fig. 3. 
Conditions are E = 0.10, SC = 1250 : (a) and (b) M2 = 100 ; 

(c) and (d) M2 = 500. 

Fig. 8. Contour plots showing the Schmidt number depen- 
dence. Higher SC causes thinner concentration boundary 
layers. Streamlines are shown in (a) and concentration con- 
tours in (b)-(d). The streamlines and concentration contours 
are spaced the same as in Fig. 3. Conditions are E = 0.10, 

M2 = 200 : (b) SC = 1250; (c) SC = 2500; (d) SC = 5000. 

n/* ac 
2 -rdtl s I 0 ar, 

rrAC (16) 

is calculated at each surface of constant con- 
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centration : the inner cylinder, the dividing streamline, 
and the outer cylinder. The integral in equation (16) 
is evaluated numerically and AC is the appropriate 
concentration difference driving force for the region 
of interest. The concentration driving forces are 
AC = Ci,,,, for the inner cylinder surface, AC = 
C outer- cin*a for the dividing streamline, and 
AC = 1 - C,,,,, for the outer cylinder surface. The 
quantities C,,,,, and C,,,, are the nearly uniform con- 
centration ‘pools’ in the cores of the inner and outer 
recirculating flow cells. The Sherwood number 
relationships are then determined from multiple linear 
regression of the computational results obtained for 
27 combinations of values of E, M and SC from their 
ranges specified in the Numerical Solution section. 
Using this approach, the Sherwood number relation- 
ships and their correlation coefficients from the 
regression are 

Shnner cyhder = 0.975M0~87(&2SC)o~33 (R2 = 0.999) 

(17) 

Shdwiding streamline = 0.00460M2~44(~2S~)o~53 

(R2 = 0.988) (18) 

‘%um cyhnder = 0.0178M’~‘6(~2S~)0~29 

(R* = 0.986) (19) 

and 

SL.,all = 0.0631M’.26(~2S~)o-35 (R* = 0.990). 

(20) 

The correlation coefficients substantiate the good fit 
of these Sherwood number relationships to the 
numerical results. Furthermore, equations (17-20) 
show the emergence of the inner cell Peclet number, 
E*SC, as a unified dependence. The inner cell Peclet 
number has been shown elsewhere to be a central 
parameter in the formulation of problems where inner 
cell convection is important [10-l 21. 

We now compare our numerically-determined cor- 
relations to analytical models where strong inner cell 
convection has been considered (i.e. a2Sc >> 1) [I& 
121. Analytically, one finds the leading order form of 
Sh at the inner cylinder surface is 

Shanaryticar inner cylinder = bM(&* SC) 1’3 (21) 

for M + cc and s2Sc >> 1 [lO-121, when written in 
our variables. Small differences in the analytical treat- 
ments of transport in an acoustic streaming flow leads 
to some variation in the coefficient b; b = 0.526 
according to Jameson [IO], b = 0.809 according to 
Richardson [ 1 l] and b = 0.65 according to Davidson 
[12]. Nevertheless, equation (21) is similar to our 
numerically-determined inner cylinder correlation 
given by equation (17). There are no analytical the- 
ories comparable to equations (18)-(20) which 
describe mass transport across the dividing streamline, 

at the outer cylinder surface, and overall (a com- 
bination of all three resistances). 

The power on M in equation (17) is different from 
that in equation (21) because, our values of I’M* 
(100 < M2 < 500) are not sufficiently high to be con- 
sidered in the limiting case, M2 + co, where 
6 N O(M-I), a result that could be anticipated from 
thDeC acoustic streaming flow literature [4]. Since the 
range of parameters we chose to study were guided by 
experimentally achievable values, experimental results 
are likely to deviate from results predicted by equa- 
tions (21) unless the effects of finite M are properly 
incorporated into that model. Because we used numeri- 
cal solutions of the flow equations to solve the convec- 
tive diffusion equation, our model correctly accounts 
for the effects of finite M. In fact, Richardson’s model 
includes the effects of finite M as a higher order 
correction to equation (21) [ 111. 

Unlike the powers on M, the one third power on 
the inner cell Peclet number, c*Sc, in equation (21) is 
matched perfectly with the one in equation (17) that 
was determined from the numerical solutions. The 
equivalent values for the power on s*Sc in equations 
(2 1) and (17) is somewhat surprising since we obtained 
numerical simulations for E*SC as low as 1.25, which 
does not completely satisfy the condition of strong 
inner cell convection (s*Sc > 1). For e2Sc N O(1) a 
uniform concentration core does not develop in the 
inner flow, and the core concentration depends on the 
azimuthal coordinate. Relatively steep gradients still 
exist at the inner cylinder and at the dividing stream- 
line. This means that the nature of concentration 
gradients is more important in determining the power 
on s2Sc in equation (17) than the formation of a nearly 
uniform concentration core in the inner flow. 

The Sherwood number correlations developed from 
our numerical solutions, equations (17)-(20), are well- 
supported by high Schmidt number experimental data 
acquired under a wide range of conditions. Figure 
9 compares the results of our numerical model to 
experimental data acquired by Jameson 
(0.102 < E < 0.298, 5 < w ,< 175, SC = 32.3 x 106) 
PO1 and Raju et al. (0.230 < E < 0.638, 
290 < ti < 2600,854 < SC < 1114) [14]. 

Jameson’s data in Fig. 9 is shown to agree quite 
well with a mass transfer model where the entire resis- 
tance to transport resides near the inner cylinder wall. 
The likely reason for this agreement is that the exper- 
imental data were taken at small values of M where 
the inner cell expands and a single large recirculating 
flow cell exists (as noted in the Introduction). There- 
fore, the main resistance to mass transfer is at the 
inner cylinder surface, making equation (17) the most 
appropriate correlation. Despite the agreement 
between Jameson’s experimental data and equation 
(17), caution is required to extend a correlation 
beyond the parameter range for which it was derived, 
as we have done here. Nevertheless, because equation 
(17) was determined at values of M closer to the exper- 
imental conditions, it agrees with experimental results 
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-Equation (17), m=O.87, n=0.33 
o Jameson’s data (1964) 

O-l---l-’ 
0 20 40 60 80 100 

M” 
Fig. 9. Comparison of models to experimental data. The 
inner cylinder model, equation (17), (m = 0.87, n = 0.33), is 
compared with Jameson’s data [lo]. The model combining 
mass transfer resistances from the inner cylinder and dividing 
streamline, equation (22) (m = 1.44, n = 0.44), is compared 

with the data of Raju et al. [ 141. 

better than any of the analytical equations of the form 
of equation (21). 

Figure 9 also shows that the data from Raju et 
al. agrees with a Sherwood number correlation that 
includes mass transfer resistance at the inner cylinder 
and dividing streamline, but excludes any mass trans- 
fer resistance at the outer cylinder. Specifically, the 
data from Raju et al. is compared to the two-resistance 
Sherwood number correlation, 

Sh, mner cylinder and diwding streamline = 0.0697M’.44(~2S~)o 44. 

(22) 

The agreement between this model and Raju et al. 
experiments is excellent. The good agreement between 
the two-resistance model and experiments suggests 
that the outer recirculating flow is sufficiently weak 
that it is disrupte’d by modest disturbances, creating a 
thoroughly mixed outer region. Conversely, the inner 
recirculating flow is stronger and less susceptible to 
disturbances. 

Overall, the experimental data suggests that in real 
systems, the exact nature of the far-field is not of 
tremendous importance because the outer recir- 
culating flow is relatively weak. Our numerical results 
show that the inner flow has the same DC boundary 
layer thickness and velocities for both A/a = 10 and 
A/a = 25. Bertelsen, in a more comprehensive analy- 
sis, finds that the inner flow is unaffected when 
A/a > 7 [9]. Therefore, our choice of A/a = 10 for the 
location of the outer cylinder appears to be appro- 
priate, based on analytical and numerical studies of 
the flow and experimental results for mass transport 
in the flow. 

CONCLUDING REMARKS 

The numerical work presented here is the starting 
point for developing a new experimental method for 
studying chemical intermediates generated by an elec- 
trochemical reaction on the inner cylinder surface, a 
wire electrode. Such an intermediate species enters the 
well-mixed inner cell by diffusion from the electrode. 
The intermediate can leave the inner recirculation cell 
by diffusion across the dividing streamline or by con- 
sumption via a homogenous reaction within the well- 
mixed inner core. Thus, the core of the inner cell serves 
as a microscopic well-mixed reactor for homogeneous 
reaction of the intermediate. Mass transfer 
coefficients, k,, determined in this study can be com- 
bined with an overall species mass balance on the 
inner cell to estimate the reaction rate constant, k,,,, 
provided one can measure the concentration of reac- 
tion intermediates at the surface of the inner cylinder 
and in the core of the inner flow. Using custom-built 
imaging Raman spectroelectrochemistry equipment, 
we have shown that one can make in situ con- 
centration measurements with approximately 5 pm 
spatial resolution [15] which is adequate for probing 
the concentration profile of the inner cell around a 1 
mm wire. We are, therefore, poised to combine acous- 
tic streaming flow and imaging Raman spec- 
troelectrochemistry, creating a new analytical tech- 
nique. 
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